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Wiring cost minimization has successfully explained many struc-
tures of nervous systems. However, in the nematode Caenorhab-
ditis elegans, for which anatomical data are most detailed, wiring
economy is thought to play only a partial role and alone has failed
to account for the grouping of neurons into ganglia [Chen BL, Hall
DH, Chklovskii DB (2006) Proc Natl Acad Sci USA 103:4723–4728;
Kaiser M, Hilgetag CC (2006) PLoS Comput Biol 2:e95; Ahn Y-Y,
Jeong H, Kim BJ (2006) Physica A 367:531–537]. Here, we test the
hypothesis that optimally wired subnetworks can exist within
nonoptimal networks, thus allowing wiring economy to give an
improved prediction of spatial structure. We show in C. elegans
that the small subnetwork of wires connecting sensory and motor
neurons with sensors and muscles, comprising only 15% of con-
nections, is close to optimal and alone predicts the main features
of the spatial segregation of neurons into ganglia and enceph-
alization. Moreover, a method to dissect networks into optimal
and nonoptimal components is shown to find a large near-optimal
subnetwork of 84% of neurons with a very low position error of
5.4%, and that explains clustering of neurons into ganglia and
encephalization to fine detail. In general, we expect realistic
networks not to be globally optimal in wire cost. We thus propose
the strategy of using near-optimal subnetworks to understand
neuroanatomical structure.

encephalization � ganglia � optimization � wiring economy �
anatomy

Why do neurons organize spatially in ganglia, strata, brain
areas, and maps? Spatial patterns might have several origins.

Evolutionary and developmental constraints underlie spatial orga-
nization in nervous systems (1). Neuromodulation can be more
effective when neurons form spatial groups (2). Processing can
require the use of different wire lengths and a spatial organization
of delays (3). Wiring economy (4) can also explain spatial patterns
and has the advantage of being quantitatively testable. This prin-
ciple states that the morphology of nervous systems is such that the
cost of interconnecting its parts is the minimum possible given that
the conditions for the proper functioning of the system are met. It
is simple to see that wiring economy can result in the organization
of the nervous system into spatial structures. Imagine, for example,
the simple case of two types of neurons, say, R or L neurons
responding to the excitation of right and left eyes in a human,
respectively. If R neurons are heavily connected among themselves
and the same for the L neurons, whereas the R–L connections are
few, it can save wire to have the R neurons and L neurons
segregated into two different spatial groups, because mixing them
would increase the amount of wire used.

The wiring economy principle has been applied to many struc-
tures in nervous systems. It has been used to explain large brain
structures, such as the existence of brain areas (5), neocortical
folding (6), retinotopic maps (7, 8), ocular dominance patterns (5,
9), orientation maps (5, 10, 11), segregation of gray and white
matter (12–14), and the arrangement of areas in vertebrate cortex
and ganglia in C. elegans (15–18). Wiring economy has also been

used to explain the structure of neurons, including their dimensions
(19–21) and branching angles (22, 23).

The most detailed application of wiring economy has been to the
entire nervous system of Caenorhabditis elegans (24). These authors
updated the wiring diagram of C. elegans (25, 26) and used methods
developed previously for circuit board design (27, 28) to predict
neuronal layout (18). Predicted positions differed from actual ones
on average �10% the length of the animal. These results showed
that wiring economy is at work in C. elegans, but the layout was
found to be nonoptimal (29, 30). The actual spatial organization in
distinct ganglia could not be obtained from wiring economy applied
to the complete network unless extra factors related to axonal
guidance and command neuron function were added to the theo-
retical prediction (24).

Here, we use wiring economy alone to predict the clustering of
neurons in ganglia in C. elegans. The article is organized as follows.
First, we show that the optimization of the subnetwork of connec-
tions from sensory and motor neurons to sensors and muscles,
respectively, is responsible for the main features of the clustering in
ganglia. Second, we show that wiring economy further applied to
the connections among sensory and motor neurons lowers the
mean error of predicted neuron positions and improves details of
the prediction of clustering. Third, we propose a method to dissect
networks into optimal and nonoptimal components. Application to
the experimental configuration of neurons in C. elegans finds an
optimal subnetwork of 84% of neurons that explains the neuro-
anatomy of the animal down to fine details and using only wiring
economy.

Results
Wiring Optimization of Complete Network Does Not Predict Actual
Clustering. The C. elegans network is formed by 279 neurons,
excluding pharyngeal and unconnected neurons, organized in clus-
ters known as ganglia (Fig. 1A; see ref. 25). There are 10 ganglia
known as anterior (G1 in Fig. 1A), dorsal (G2), lateral (G3), ventral
(G4), retrovesicular (G5), posterolateral (G6), ventral cord (G7),
preanal (G8), dorsorectal (G9), and lumbar (G10). Ganglia G1–G5
are clustered in the head and G8–G10 in the tail. The head also has
a high concentration of synapses in a region known as nerve ring.
There are 73 sensory neurons (neurons connected to sensors and
other neurons), 113 motor neurons (neurons connected to muscles
and other neurons), 13 neurons that are simultaneously sensory and
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motor, and 80 interneurons (neurons connected only to other
neurons).

We adopt the ‘‘dedicated wire’’ cost model of (24) for the C.
elegans network. Because the length of this nervous system is more
than 10 times its diameter, the model considers a single dimension
for simplicity. The network is modeled as a set of nodes representing
the cell bodies connected by wires, which represent axons and
dendrites. Although in C. elegans each axon makes more than one
synapse, the model in principle assumes that each synapse has a
dedicated wire. The total wiring cost W is written as the sum of three
costs, one for connections among neurons, a second one for
connections between neurons and sensors, and a third one for
connections between neurons and muscles

W �
1
2

� �
i, j�1

N

Aij�xi � xj�� � �
i,k�1

N,S

Bik�xi � sk�� � � �
i,l�1

N,M

Cil�xi � ml��,

[1]

with Aij, Bik, and Cil the number of synapses between neurons i and
j, neuron i and sensor k, and neuron i and muscle l, respectively. N,
S, and M are the number of neurons, sensors, and muscles,

respectively. xi is the 1D projection of the position of neuron i, with
sk and ml analogously for the fixed positions of sensor k and muscle
l, respectively. All positions have values from 0 to 1 (where 0 is the
head and 1 is the tail). The 1/2 factor multiplying Aij takes into
account the fact that the distance between each pair of neurons is
summed twice (note that A is a symmetric matrix). � and � are
normalization constants to take into account differences in average
cost of the sensory neuron, motor neuron, and interneuron groups.
These coefficients can account, for example, for part of the
difference between the structure of the ‘‘dedicated wire’’ model and
the real network. In the actual network, each neurite that connects
two neurons or a neuron and a muscle holds on average 29.3
synapses. Because the model assumes a wire per synapse, the extra
cost can be discounted by dividing the wire cost of neuron-to-
neuron and neuron-to-muscle connections by 29.3, that is, by
making 1/� � 1/� � 29.3 (24). On the other hand, actual connec-
tions between neurons and sensors do have a dedicated neurite for
each synapse, so, in this case, the model is already in good
agreement with reality. Wire cost may be due, for example, to wire
volume (5, 18, 22), signal delay and attenuation (31, 32), metabolic
costs (33, 34), noise and developmental costs (35). Its functional
form is unknown but it is clear that it should increase with wire
length. Here, it is written as a power � of the wire length. Because
wiring cost minimization is analytical for the quadratic case, � � 2,
results have always been obtained for this exponent except where
indicated otherwise. Numerical tests suggest that these results are
robust with respect to a change in the precise form of the cost (see
Materials and Methods). The optimal neuron positions minimizing
the total cost W in Eq. 1 for � � 2 can be obtained analytically as
follows [see refs. 18, 27, and 28 and supporting information (SI)
Text]:

x� � Q�1�Bs� � �Cm� � [2a]

Qip � �ij���
j�1

N

Aij � �
k�1

S

Bik � ��
l�1

M

Cil� � �Aip. [2b]

The optimal positions of the 279 nonpharyngeal neurons calculated
from Eq. 2 and using the connectivity matrices and sensor and
muscle positions of the real nematode (see Materials and Methods)
compare well with the actual positions of the somas with a low
average error of ep � 9.71%, much lower than the average error of
random positions, ep,rand � 34.6% (24). However, the correct
clustering is not predicted by wire cost minimization of the full
network (Fig. 1 B–E). Neurons within each ganglion are closer to
each other than to neurons in other ganglia, although in the 1D
projection some ganglia overlap. The first five ganglia, located in the
head of the nematode, are compact and overlap in the 1D projec-
tion. The same happens with the last three, which are located in the
tail. The other two (ganglia 6 and 7) are much more elongated and
located at the mid-body region. Fig. 1B shows the positions of the
neurons along the actual nematode, grouped by ganglia, and offset
for clarity. Fig. 1C shows the positions of the predicted positions of
somas obtained from wire cost minimization applied to the com-
plete network. As in Fig. 1B, neurons are grouped by ganglia in the
actual animal and offset for clarity. Neurons belonging to the same
ganglion in the actual network are now dispersed. Fig. 1D shows for
the actual nematode the mean distance between neurons in the
same ganglion (diagonal squares), and between neurons that lie in
different ganglia (off-diagonal squares) (see Materials and Meth-
ods). The clustering structure seen in the actual nematode, Fig. 1D,
is however very different to the one predicted by wire cost mini-
mization applied to the complete network (Fig. 1E; see also Fig. 1C
for an intuitive picture). To quantify how far the predicted clus-
tering structure is from the actual one, we subtracted the clustering
graphs in Fig. 1 D and E and calculated the mean resulting value as
the clustering error, ec � �i,j

G�aij(actual) � aij(predicted)�/G2, where
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Fig. 1. Optimization of the complete C. elegans network fails to predict
actual clustering. (A) Soma positions in the actual nematode are organized in
spatial clusters known as ganglia. (B) Soma positions in the actual nematode.
Somas in different ganglia are offset for clarity. (C) Soma position obtained by
minimizing the wiring cost of the complete network. Neurons in different
ganglia in the actual network are offset for clarity. (D) Average distance
between somas belonging to the same ganglion (diagonal elements) and
different ganglia (nondiagonal elements) for the actual nematode. (E) Same
as D but obtained for soma positions minimizing the total wiring cost. (F)
Average number of connections per neuron between ganglia. Diagonal
squares, connections between neurons belonging to the same ganglion;
nondiagonal squares, connections between neurons belonging to different
ganglia. White boxes enclose regions of the graph corresponding to ganglia
overlapping in the one dimension considered. Elements with a value of exactly
0 are colored in black. (G) Average number of connections per neuron be-
tween ganglia and organs that lie in each of the 10 bins we divided the length
of the nematode. White boxes enclose regions corresponding to connections
between ganglia and organs located at the same position in the body as the
ganglion. Elements with a value of exactly 0 are colored in black. C and E were
obtained with � � � � 1/29.3.
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G � 10 is the number of ganglia, and aij(actual) and aij(predicted)
are the elements of the actual and predicted clustering graphs,
respectively. The clustering error ec has values between 0 (perfect
prediction) and 1 (animal length), and we multiply it by 100 to give
values as percentage of animal length, similarly to the neuron
position error. Its value for the optimization of the complete
network is ec � 16.4% the length of the animal, a value closer to the
case of random positions, ec,rand � 21.8% , than to a perfect
prediction. In the following, we always use the notation ec for
clustering error as defined above and ep for average position error.

Although the actual clustering in C. elegans is not consistent with
wiring cost minimization of the complete network, we wondered
whether it could be consistent with wiring economy of subnetworks.
If clustering is due to wiring economy, there could be in principle
the following two simple scenarios for its origin. Wiring economy
would predict clustering when there are more connections within a
group of neurons than between neurons belonging to different
groups. In this case, neurons belonging to the same group or
ganglion would cluster to minimize the cost of intra-ganglion wires.
Fig. 1F shows the number of connections per neuron between the
neurons of the same ganglion (diagonal elements) and between
neurons of different ganglia (off-diagonal elements). Elements
representing exactly 0 connections per neuron are colored in black.
Clustering would naturally arise in the optimal layout if diagonal
elements were much stronger than nondiagonal ones. Furthermore
there should be much higher connectivity between ganglia that are
close to each other (e.g., ganglia 1 to 5) than between distant ganglia
(e.g., ganglia 3 and 10). White lines in Fig. 1F limit these regions of
the graph for which high connectivity between ganglia would be
consistent with the actual layout. For example, elements within the
big white box in the lower-left corner represent connectivity among
the first five ganglia, which are very close to each other in the actual
nematode. The other two white boxes have a similar interpretation.
Elements outside the white boxes represent connectivity between
distant ganglia. Although elements with highest connectivity values
lie within the white boxes, elements outside them are also important
with each ganglion connected to almost all ganglia, so a simple
picture for clustering does not emerge.

An alternative explanation for the clustering of neurons in
ganglia would consist in a high interconnectivity between neurons
and sensors and muscles. Fig. 1G shows the number of connections
per neuron between each ganglion and the organs, sensors and
muscles, located within small segments of the nematode. In this
case, the connectivity is much more consistent with the actual layout
of the ganglia: ganglia 1 to 5 are strongly connected to a small region
at the head of the nematode, ganglia 6 and 7 are connected to a
large region in the middle of the body, and ganglia 8 to 10 are
connected to a small region at the tail. Vertical white lines in Fig.
1G limit these regions of connectivity, and horizontal white lines
separate the three groups of ganglia. It is clear that each ganglion
is strongly connected only to one region of the animal, and very
weakly connected, or not connected at all (black elements in Fig.
1G), to organs in other regions. This connectivity pattern suggests
a simple picture for clustering based on wiring economy and a high
interconnectivity between sensory and motor neurons and spatial
patches of organs.

Wiring Optimization of Subnetwork of Connections from Sensory and
Motor Neurons to Organs Predicts Main Features of Clustering. We
therefore tested the prediction of cost minimization of wires
connecting sensory and motor neurons with sensors and muscles,
respectively. The associated cost for this case can be obtained from
the total cost in Eq. 1 making � � 0, that is, eliminating from the
optimization the costs of neuron-to-neuron wires,

W � �
i,k�1

N̂,S

Bik�xi � Sk�� � � �
i,l�1

N̂,M

Cil�xi � ml��, [3]

with N̂ � 199 the total number of sensory and motor neurons.
Minimization of this cost function for cost exponent � � 2 gives
explicitly the optimal position for sensory and motor neurons of the
form (see SI Text)

xi �

�
k�1

S

Biksk � � �
l�1

M

Cilml

�
k�1

S

Bik � � �
l�1

M

Cil

. [4]

Therefore, wiring economy in this case reduces to a simple predic-
tion by which each sensory and motor neuron should be located at
the center of mass of the sensors and muscles it connects to. Despite
its simplicity, the center of mass formula (Eq. 4) predicts to a very
good approximation the neuronal layout of the 199 sensory and
motor neurons of C. elegans (mean position error ep � 9.08%, r �
0.923 for � � 1) (Fig. 2A). Also, the density of the neurons along
the animal is similar to the actual one, predicting encephalization
as seen in the real animal although with brain ganglia shifted to a
more anterior position (Fig. 2B). More importantly, the main
features of the clustering pattern in ganglia are correctly predicted.
The predicted distances between neurons from the same ganglion
and between neurons from different ganglia (Fig. 2C, clustering
error ec � 6.99%), compare well with the actual clustering pattern
of sensory and motor neurons (Fig. 2D).
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Fig. 2. Optimization of neuron-to-organ connections predicts main features
of clustering. (A) Optimal positions of sensory and motor neurons, obtained by
minimizing the cost of wiring them to organs, versus their actual positions.
Colors distinguish different ganglia. (B) Density sensory and motor neurons
along the nematode for actual and optimal positions. (C) Average distance
between neurons belonging to the same ganglion (diagonal elements) or
different ganglia (nondiagonal elements) for optimized sensory and motor
neuron positions. (D) Same as C but for the actual nematode. (E) Same as C but
optimizing the complete network. (F) Histogram of sizes of the minipatches of
skin to which each neuron connects.

17182 � www.pnas.org�cgi�doi�10.1073�pnas.0703183104 Pérez-Escudero and de Polavieja
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The predictions obtained using the center of mass formula in Eq.
4 are extremely robust. Varying the parameters � and the cost
power � have an effect on average position error of 1% and on
clustering error �0.3% because of the fact that sensors and muscles
are connected to small skin patches (Fig. 2F; see also SI Text). It is
interesting to compare the results of this simple center-of-mass
calculation with the predictions for sensory and motor neurons
when optimizing the complete network, Eq. 2. The difference
between the two calculations is that the complete network one also

includes all neuron-to-neuron connections. For the complete net-
work calculation we found that average position error ep and
clustering error ec are lowest for � � 0.05 and � � 1.5. However,
even for this best case the clustering is worse than that obtained
using the simple center-of-mass calculation (Fig. 2E, ec � 7.26%).
For other values like � � � � 1/29.3 chosen in reference (24) the
clustering error is even higher (SI Fig. 6A, ec � 12.3%). We thus
conclude that the net effect of the neuron-to-neuron connections in
the optimization worsens the predictions. The rest of the paper is
dedicated to prove that predictions can however be improved
further by including part of the neuron-to-neuron connections. In
this way we will be able to predict neuron positions for more than
just the 199 sensory and motor neurons and explain neuroanatomy
to finer details.

Optimal Connections Among Sensory and Motor Neurons Improve
Predicted Clusters. We started by adding the connections among
sensory neurons, motor neurons and between sensory and motor
neurons. The effect of these neuron to neuron connections is
obtained from wiring economy of the subnetwork of sensory and
motor neurons using the total cost W in Eq. 1 but restricting the
sums to sensory and motor neurons. We found an improvement
over the center of mass formula in Eq. 4 for neuronal positions,
clustering structure and neuron statistics along the animal for a
large parameter range, � � 0.1 and � 	 0.06. The best results for
neuronal positions and clustering structure were found for � � 0.05
and � � 1.5 (in the remaining, we always use these parameter
values). Neuronal layout (Fig. 3A, ep � 7.71%, r � 0.93) and
clustering in ganglia (Fig. 3 B and C; ec � 5.23%) are closer to actual
ones (Fig. 3D).

Dissection into Optimal and Nonoptimal Subnetworks. To proceed
further, we needed a method to dissect the complete network into
optimal and nonoptimal subnetworks in the sense of Eq. 2. The
number of subnetworks in a system of N neurons is 2N, an
astronomically large number for analysis. Instead, we have used a
method of analysis that uses of the order of N calculations. In the
following, we illustrate the core of our method using the toy
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as C but for a network configuration with the C. elegans connectivity and with optimal and nonoptimal subnetworks (blue) and for a noisy network with neurons
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Dissection method does not find a separation between optimal and nonoptimal components in noisy networks built without optimal and nonoptimal
components.
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connectivity illustrated in Fig. 4A, with 9 optimal neurons in blue
and the 10th neuron in pink in a random position, also connected
to sensors or muscles (green circles). Blue and pink links indicate
N and M connections, respectively. The first step of the method
consists in classifying the neurons by their position error measured
for each neuron as the difference between its actual position and its
locally optimal position, calculated as the position of its center-of-
mass that in general reads as

xi
CM �

� �
j�i

Aij xj
actual � �

k

BikSk � � �
l

Cilml

� �
j�i

Aij � �
k

Bik � ��
l

Cil
, [5]

with xj
actual the actual positions of the rest of the neurons (� � � �

1 in toy model). For the example in Fig. 4A, all of the optimally
placed neurons have vanishing position errors, except neuron 7 that
is connected also to the nonoptimal neuron 10. Although neuron 7
is optimal, its estimated position error depends linearly on the
position of neuron 10 with a slope given by M/(M 	 4N). As long
as the nonoptimal neuron 10 is located sufficiently far from its
center-of-mass position and the optimal links outnumber nonopti-
mal ones, N M, neuron 7 is then correctly classified as having less
position error than neuron 10, (Fig. 4B, continuous and dashed blue
line). The second step of the method consists in performing a full
optimization using Eq. 2 with the complete network first and then
further optimization calculations eliminating one by one the neu-
rons in order of decreasing position error as determined by step 1,
and for each of these subnetworks we calculate the average position
error ep. In our example this procedure corresponds to an optimi-
zation calculation with all neurons first, then we eliminate neuron
10, followed by neuron 7 and then any of the rest, and calculate for
each case the average position error, Fig. 4C. The lowest average
position error is found for neurons 1–9, that is, the method finds the
optimal subnetwork. Two lessons can be extracted from this simple
example. First, this simple method works better the lower the
number of nonoptimal links. Second, it is clear that step 1 can be
improved by using an iterative classification. Once neuron 10 is
classified as the worst one, the remaining 9 are reclassified. From
these 9 neurons the worst neuron is selected and put as second
worse in the list. This reclassification process is continued until the
last neuron. In this way optimal neurons linked to nonoptimal ones,
like neuron 7, are not necessary classified as worse than the rest by
the dissection method. In the rest of the paper we use this iterative
step 1 unless stated otherwise.

We then applied the dissection method to artificial network
configurations with the same connectivity as the C. elegans network
to test its efficacy in separating optimal and nonoptimal subnet-
works. We built network configurations with a given percentage of
randomly selected nonoptimal neurons with positions taken from a
uniform distribution of width given by the length of the animal. The
rest of the neurons are optimal, that is, obtained from an optimi-
zation calculation including only these neurons. We applied to these
network configurations the iterative step 1 to classify the neurons
by position error and step 2 to calculate the average position error
ep in subnetworks of decreasing size by gradually eliminating the
worst neurons in the list of step 1 (Fig. 4D, blue curve). The average
position error ep goes down to a value very close to zero (as seen
from right to left) at a network size that separates the optimal and
nonoptimal subnetworks. The dissection method was found to have
an excellent performance in the estimation of the size of the
nonoptimal network for nonoptimal subnetworks up to a size of
50% and deteriorates only slightly for larger nonoptimal networks
(Fig. 4E, blue). The percentage of neurons correctly classified as
nonoptimal (truly nonoptimal neurons in the estimated nonoptimal
subnetwork) is also excellent with little misclassification until a size
of 50% of the total network and a slight deterioration for increasing

size (Fig. 4E, green). Similar results are found for neurons in
nonoptimal networks located randomly following a Gaussian in-
stead of a uniform distribution (SI Fig. 7B). Crucial for the success
of the method is the iterative step 1, without which the deterioration
of the estimation already starts at a size of nonoptimal subnetwork
of 25% (SI Fig. 8B).

Networks formed by a near-optimal subnetwork with a given low
noise added to optimal positions and a nonoptimal subnetwork with
larger noise are also dissected to a good approximation when the
nonoptimal subnetwork has a size �50% of the total network (SI
Fig. 9B). The distinct feature of the average position error ep in step
2 for this case is not a minimum but an abrupt change in the slope
when reducing the size of the network. This point of abrupt slope
change separates well the optimal from the nonoptimal subnet-
works (SI Fig. 9A). We have implemented a robust numerical
algorithm to find this separation point automatically (SI Text).
Noisy networks, that is, networks in which neurons are randomly
displaced from its optimal location but do not have optimal and
nonoptimal subnetworks, also have lower average position error ep
when eliminating the worst located neurons. Interestingly, however,
these noisy networks never show, whatever the noise level, a special
point that could be used to separate optimal from nonoptimal
subnetworks like a minimum or a change in slope (Fig. 4D, red line
for uniform noise and SI Fig. 9A, red line for Gaussian noise). As
a consequence, our algorithm classifies noisy networks either as
fully optimal when the noise is very low or as fully nonoptimal for
higher noise (Fig. 4F for uniform noise and SI Fig. 9C for Gaussian
noise).

Dissection of the actual C. elegans network results in a nonop-
timal subnetwork of 12% of neurons (34 of 279) with 20 interneu-
rons, 8 sensory neurons and 6 motor neurons. The average position
error ep is lowered from 8.8% for the complete network to 5.4% for
the near-optimal subnetwork (Fig. 5A, see SI Table 1 for a list of the
nonoptimal neurons). More importantly, the clustering error ec is
lowered very significantly from 14% to 2.1% (Fig. 5B) so the
clustering diagram of the optimal subnetwork (Fig. 5B, Large Inset)
is now very similar to the experimental one down to fine details like
the clustering in ganglia within the brain (Fig. 1D). Encephalization,
for example, is explained by using wiring economy for the optimal
subnetwork (SI Fig. 10). By using the optimal subnetwork and a
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Fig. 5. Dissection of the actual C. elegans configuration into near-optimal
and nonoptimal subnetworks. (A) Average position error ep in networks of
decreasing size (from right to left) eliminating worst located neurons in the
order determined in step 1 of the method. Separation of optimal and non-
optimal subnetworks was found automatically at the point with a plus sign
corresponding to a large slope change. Insets: Predicted versus actual position
for the near-optimal subnetwork and for the complete network. (B) Same as
A but for the clustering error. (Insets) Clustering diagram for near-optimal
subnetwork (compare with actual one in Fig. 1D) and for total network.
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simple model for synapse location at the middle point between
somas, predicted location of synapses is found to be consistent with
the actual nerve ring (SI Fig. 11). Note that the error of the
near-optimal subnetwork in C. elegans does not go to zero, consis-
tent with a network in which both the near-optimal and nonoptimal
subnetworks have noise of different variances (SI Fig. 9D).

Wiring economy applied to the near-optimal subnetwork in C.
elegans accounts for the clustering of neurons into ganglia as shown
by the low clustering error of ec � 2.1%. The origin of this low value
is 2-fold. First, the dissection method has eliminated badly located
nonoptimal neurons thus reducing average position error. Second,
in the optimization of the complete network, the nonoptimal
subnetwork is not passive but has a negative effect on the near-
optimal subnetwork. The clustering error of the near-optimal
subnetwork in the complete network optimization is found to be 3%
higher than alone. To further understand this effect, we have
searched for the nonoptimal neurons responsible for increased
position errors in the near-optimal neurons when both are forming
the complete network. We removed one neuron at a time and
calculated the change in position error in each of the near-optimal
neurons (SI Fig. 12A). Neuron labels in the figure are located such
that most damaging nonoptimal neurons are at the bottom and
most affected near-optimal neurons to the left. The most damaging
nonoptimal neurons are the interneurons AVA, DVA, PVC and
AKL. The near-optimal neurons most affected by these nonoptimal
neurons are PHC and PHB, but many more are affected and this
effect is in part responsible for the low clustering error when
eliminating the nonoptimal subnetwork. Nonoptimal neurons also
affect the position error of other nonoptimal neurons, but the
effects are smaller than on near-optimal neurons and in this case
there is no clear core of most affecting neurons (SI Fig. 12B). Only
DVA appears again as one of the more damaging neurons.

Discussion
The C. elegans nervous system was found to contain a subnetwork
of 84% of neurons wired almost optimally. This subnetwork ex-
plains the origin of the structure of the whole system, in particular
the segregation of neurons into ganglia and encephalization. A
small subset of the connections of this large near-optimal subnet-
work formed by the links of sensory and motor neurons to sensors
and muscles is responsible for the main features of the neuroanat-
omy. Connections among neurons are responsible for further
neuroanatomical detail, like the formation of ganglia within the
head ganglia and the location of this head ganglia within the body.
An analysis of nonoptimal neurons revealed that interneurons

AVA, DVA, PVC, and AKL have a negative effect on the position
of near-optimal neurons in a complete network optimization. This
result is consistent with the idea that these interneurons might be
spatially constrained in the actual nematode. Interestingly, DVA is
a stretch receptor neuron expressing TRP-4, the elegans homologue
of the mechanosensitive TPRN channel (36). AVA and PVC
express UNC-8, a DEG/EnaC family member homologue to sub-
units of a mechanically gated ion channel (37). Internal body
sensors like those implicated in propioception could be added to the
theory in a form identical to external sensors when experimental
data becomes available.

Materials and Methods
Data. Network connectivity and actual positions of somas, sensors,
and muscles were taken from the revised data published in ref. 24,
available at www.wormatlas.org.

Construction of Interganglia Distance Graphs. Interganglia distance
graphs, or clustering graphs, as those in Fig. 1 D and E, were built
in the following way. Neurons were grouped by the ganglion they
belong to in the real nematode. Then, distances between every
neuron of ganglion i and every neuron of ganglion j are computed
(or, if i � j, between every two neurons of the same ganglion). The
average of these distances is the i,j-th element of the interganglia
distance graph. Note that these matrices are symmetrical by con-
struction.

Construction of Interganglia Connectivity Graphs. Square (i,j) of Fig.
1F represents the number of connections per neuron between
ganglia i and j. It was computed by dividing the total number of
connections between ganglia i and j by the sum of the number of
neurons of the two ganglia. When i � j, it is computed as the total
number of connections between neurons of the same ganglion
divided by the number of neurons that form the ganglion. For Fig.
1G, the length of the nematode was divided into 10 bins of equal
length. Square (i,j) of this figure represents the number of connec-
tions between ganglion i and the organs that fall into the j-th bin,
divided by the number of neurons in ganglion i.
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